Guide to store varieties of batteries

In general, the recommended storage temperature for most batteries is 15°C (59°F); the extreme allowable temperature is –40°C to 50°C (–40°C to 122°F) for most chemistries. While lead acid battery must always be kept at full charge during storage, nickel- and lithium-based chemistries should be stored at around a 40 percent state-of-charge (SoC). This level minimizes age-related capacity loss while keeping the battery in operating condition and allowing self-discharge.

Lithium-ion batteries are often exposed to unfavorable temperatures, and these include leaving a cell phone in the hot sun or operating a laptop on the power grid. Elevated temperature and allowing the battery to sit at the maximum charge voltage for expended periods of time explains the shorter than expected battery life. Elevated temperature and excessive overcharge also stresses lead and nickel-based batteries. All batteries must have the ability to relax after charged, even when kept on float or trickle charge.

Nickel-metal-hydride can be stored for about three years. The capacity drop that occurs during storage can partially be reversed with priming. Nickel-cadmium stores well, even if the terminal voltage falls to zero volts. Field tests done by the US Air Force revealed that NiCd stored for five years still performed well after priming cycles. It is believed that priming becomes necessary if the voltage drops below 1V/cell. Primary alkaline and lithium batteries can be stored for up to 10 years with minimal capacity loss.

You can store a sealed lead acid battery for up to two years. Since all batteries gradually self-discharge over time, it is important to check the voltage and/or specific gravity, and then apply a charge when the battery falls to 70 percent state-of-charge. This is typically the case at 2.07V/cell or 12.42V for a 12V pack. (The specific gravity at 70 percent charge is roughly 1.218.) Some lead acid batteries may have different readings and it is best to check the manufacturer’s instruction manual. Low charge induces sulfation, an oxidation layer on the negative plate that inhibits current flow. Topping charge and/or cycling may restore some of the capacity losses in the early stages of sulfation.

Source: www.leoch.com

Processing your request, Please wait....