Deep cycle batteries, are you lead acid battery?

People use different terms in their search for information. Some refer to lead acid battery, others to lead batteries, acid battery, car battery, auto battery, automotive batteries. You can add to this list 12 volts batteries, 6v batteries, marine batteries, deep cycle battery, golf cart batteries etc. The fact is that all those batteries use the same technology and serve the approximate same functions. They are power batteries that are used in automobiles, trucks, golf carts, recreational vehicles and in just about every motor vehicle, including boats and/or all terrains vehicles. In some countries, those batteries are also used as alternative power supplies.

Starting (sometimes called SLI, for starting, lighting, ignition) batteries are commonly used to start and run engines. Engine starters need a very large starting current for a very short time. Starting batteries have a large number of thin plates for maximum surface area. The plates are composed of a Lead “sponge”, similar in appearance to a very fine foam sponge. This gives a very large surface area, but if deep cycled, this sponge will quickly be consumed and fall to the bottom of the cells. Automotive batteries will generally fail after 30-150 deep cycles if deep cycled, while they may last for thousands of cycles in normal starting use (2-5% discharge).

Deep cycle batteries are designed to be discharged down as much as 80% time after time, and have much thicker plates. The major difference between a true deep cycle battery and others is that the plates are SOLID Lead plates – not sponge. This gives less surface area, thus less “instant” power like starting batteries need.

Industrial deep cycle batteries

Sometimes called “fork lift”, “traction” or “stationary” batteries, are used where power is needed over a longer period of time, and are designed to be “deep cycled”, or discharged down as low as 20% of full charge (80% DOD, or Depth of Discharge). These are often called traction batteries because of their widespread use in forklifts, golf carts, and floor sweepers (from which we get the “GC” and “FS” series of battery sizes). Deep cycle batteries have much thicker plates than automotive batteries.

Plate Thickness

Plate thickness (of the Positive plate) matters because of a factor called “positive grid corrosion”. This ranks among the top 3 reasons for battery failure. The positive (+) plate is what gets eaten away gradually over time, so eventually there is nothing left – it all falls to the bottom as sediment. Thicker plates are directly related to longer life, so other things being equal, the battery with the thickest plates will last the longest. The negative plate in batteries expands somewhat during discharge, which is why nearly all batteries have separators, such as glass mat or paper, that can be compressed.

Automotive batteries typically have plates about .040″ (4/100″) thick, while forklift batteries may have plates more than 1/4″ (.265″ for example in larger Rolls-Surrette) thick – almost 7 times as thick as auto batteries. The typical golf cart will have plates that are around .07 to .11″ thick. The Concorde AGM’s are .115″, The Rolls-Surrette L-16 type (CH460) is .150″, and the US Battery and Trojan L-16 types are .090″. The Crown L-16HC size has .22″ thick plates. While plate thickness is not the only factor in how many deep cycles a battery can take before it dies, it is the most important one.

Most industrial deep-cycle batteries use Lead-Antimony plates rather than the Lead-Calcium used in AGM or gelled deep-cycle batteries. The Antimony increases plate life and strength, but increases gassing and water loss. This is why most industrial batteries have to be checked often for water level if you do not have Hydrocaps. The self discharge of batteries with Lead-Antimony plates can be high – as much as 1% per day on an older battery. A new AGM typically self-discharges at about 1-2% per month, while an old one may be as much as 2% per week.

With high technology, the lead acid battery will be improved to overcome its compact size and environmentally unfriendly, and then compete in modern times. NO one can replace the lead acid battery regardless of past, present and future.

Source: www.leoch.com

Processing your request, Please wait....