Lean burn
Principle
A lean burn mode is a way to reduce throttling losses. An engine in a typical vehicle is sized for providing the power desired for acceleration, but must operate well below that point in normal steady-speed operation. Ordinarily, the power is cut by partially closing a throttle. However, the extra work done in pumping air through the throttle reduces efficiency. If the fuel/air ratio is reduced, then lower power can be achieved with the throttle closer to fully open, and the efficiency during normal driving (below the maximum torque capability of the engine) can be higher.
The engines designed for lean burning can employ higher compression ratios and thus provide better performance, efficient fuel use and low exhaust hydrocarbon emissions than those found in conventional petrol engines. Ultra lean mixtures with very high air-fuel ratios can only be achieved by Direct Injection engines.
The main drawback of lean burning is that a complex catalytic converter system is required to reduce NOx emissions. Lean burn engines do not work well with modern 3-way catalytic converters, which require a balance of pollutants at the exhaust port in order to carry out both oxidation and reduction reactions, so most modern engines run at or near the stoichiometric point. Alternatively, ultra-lean ratios can be used to reduce NOx emissions.
Chrysler Lean Burn computer
From 1976 through 1989, Chrysler equipped many vehicles with their Electronic Lean Burn (ELB) system, which consisted of a spark control computer and various sensors and transducers. The computer adjusted spark timing based on manifold vacuum, engine speed, engine temperature, throttle position over time, and incoming air temperature. Engines equipped with ELB used fixed-timing distributors without the traditional vacuum and centrifugal timing advance mechanisms. The ELB computer also directly drove the ignition coil, eliminating the need for a separate ignition module.
ELB was produced in both open-loop and closed-loop variants; the open-loop systems produced exhaust clean enough for many vehicle variants so equipped to pass 1976 and 1977 US Federal emissions regulations, and Canadian emissions regulations through 1980, without a catalytic converter. The closed-loop version of ELB used an Oxygen sensor and a feedback carburetor, and was phased into production as emissions regulations grew more stringent starting in 1981, but open-loop ELB was used as late as 1990 in markets with lax emissions regulations, on vehicles such as the Mexican Chrysler Spirit. The spark control and engine parameter sensing and transduction strategies introduced with ELB remained in use through 1995 on Chrysler vehicles equipped with throttle-body fuel injection[citation needed].
Although Chrysler published extensive training and procedural manuals on ELB, it like most early emission control systems was complicated to troubleshoot without these manuals. Many Lean Burn computers have been replaced with a standalone electronic ignition module and centrifugal/vacuum advance distributor, a retrofit to maintain fuel economy and driveability.
Heavy-duty gas engines
Lean burn concepts are often used for the design of heavy-duty natural gas, biogas, and liquefied petroleum gas (LPG) fuelled engines. These engines can either be full-time lean burn, where the engine runs with a weak air-fuel mixture regardless of load and engine speed, or part-time lean burn (also known as “lean mix” or “mixed lean”), where the engine runs lean only during low load and at high engine speeds, reverting to a stoichiometric air-fuel mixture in other cases.
Heavy-duty lean burn gas engines admit as much as 75% more air than theoretically needed for complete combustion into the combustion chambers. The extremely weak air-fuel mixtures lead to lower combustion temperatures and therefore lower NOx formation. While lean-burn gas engines offer higher theoretical thermal efficiencies, transient response and performance may be compromised in certain situations. Lean burn gas engines are almost always turbocharged, resulting high power and torque figures not achieveable with stoichiometric engines due to high combustion temperatures.
Heavy duty gas engines may employ precombustion chambers in the cylinder head. A lean gas and air mixture is first highly compressed in the main chamber by the piston. A much richer, though much lesser volume gas/air mixture is introduced to the precombustion chamber and ignited by spark plug. The flame front spreads to the lean gas air mixture in the cylinder.
This two stage lean burn combustion produces low NOx and no particulate emissions. Thermal efficiency is better as higher compression ratios are achieved.
The Rolls-Royce Bergen K series marine gas engine is an example of a heavy duty gas engine using this solution.
Honda lean burn systems
One of the newest lean-burn technologies available in automobiles currently in production uses very precise control of fuel injection, a strong air-fuel swirl created in the combustion chamber, a new linear air-fuel sensor (LAF type O2 sensor) and a lean-burn NOx catalyst to further reduce the resulting NOx emissions that increase under “lean-burn” conditions and meet NOx emissions requirements.
This stratified-charge approach to lean-burn combustion means that the air-fuel ratio isn’t equal throughout the cylinder. Instead, precise control over fuel injection and intake flow dynamics allows a greater concentration of fuel closer to the spark plug tip (richer), which is required for successful ignition and flame spread for complete combustion. The remainder of the cylinders’ intake charge is progressively leaner with an overall average air:fuel ratio falling into the lean-burn category of up to 22:1.
The older Honda engines that used lean burn (not all did) accomplished this by having a parallel fuel and intake system that fed a pre-chamber the “ideal” ratio for initial combustion. This burning mixture was then opened to the main chamber where a much larger and leaner mix then ignited to provide sufficient power. During the time this design was in production this system (CVCC, Compound Vortex Controlled Combustion) primarily allowed lower emissions without the need for a catalytic converter. These were carbureted engines and the relative “imprecise” nature of such limited the MPG abilities of the concept that now under MPI (Multi-Port fuel Injection) allows for higher MPG too.
The newer Honda stratified charge (lean burn engines) will operate on air-fuel ratios as high as 22:1. The amount of fuel drawn into the engine is much lower than a typical gasoline engine which operates at 14.7:1, the chemical stoichiometric ideal for complete combustion when averaging gasoline to be the petrochemical industries’ accepted standard of C6H8.
This lean-burn ability by the necessity of the limits of physics, and the chemistry of combustion as it applies to a current gasoline engine must be limited to light load and lower RPM conditions. A “top” speed cut-off point is required since leaner gasoline fuel mixtures burn slower and for power to be produced combustion must be “complete” by the time the exhaust valve opens.
Applications
199295 Civic VX
19962000 Civic Hx
2001-05 Civic Hx
200205 Civic Hybrid
200006 Insight Manual transmission only
Honda lean burn engine applications
Unladen weight
Fuel consumption, Japan 10-15 mode
Fuel tank capacity
Range
Years
Model
Engine
kg
lbs
L/100km
km/L
mpg UK
mpg US
L
gal UK
gal US
km
mile
Notes
199195
Civic ETi
D15B
930
2050
4.8
20.8
59
49
45
9.9
11.9
938
583
5spd manual, 3dr hatch, VTEC-E
199500
Civic VTi
D15B
1010
2226
5.0
20.0
56
47
45
9.9
11.9
900
559
5spd manual, 3dr hatch, 3 stage VTEC
199500
Civic Vi
D15B
1030
2226
5.3
18.9
53
44
45
9.9
11.9
849
528
5spd manual, 5dr sedan, 3 stage VTEC
Toyota lean burn engines
The lean burn versions of the 1587cc 4A-FE and 1762cc 7A-FE 4 cylinder engines have 2 inlet and 2 exhaust valves per cylinder. Toyota uses a set of butterflies to restrict flow in every second inlet runner during lean burn operation. This creates a large amount of swirl in the combustion chamber. Injectors are mounted in the head, rather than conventionally in the intake manifold. Compression ratio 9.5:1. The 1998cc 3S-FSE engine is a direct injection petrol lean burn engine. Compression ratio 10:1.
Applications
Toyota lean burn engine applications
Unladen weight
Fuel consumption, Japan 10-15 mode
Fuel tank capacity
Range
Years
Model
Engine
kg
lbs
L/100km
km/L
mpg UK
mpg US
L
gal UK
gal US
km
mile
Notes
199496
Carina SG-i SX-i
4A-FE
1040
2292
5.6
17.6
50
41
60
13.2
15.9
1056
656
5spd manual
199496
Carina SG-i SX-i
7A-FE
1040
2292
5.6
17.6
50
41
60
13.2
15.9
1056
656
5spd manual
199601
Carina Si
7A-FE
1120
2468
5.5
18.0
51
42
60
13.2
15.9
1080
671
5spd manual
199600
Corona Premio E
7A-FE
1120
2468
5.5
18.0
51
42
60
13.2
15.9
1080
671
5spd manual
199800
Corona Premio G
3S-FSE
1200
2645
5.8
17.2
49
41
60
13.2
15.9
1034
643
Auto
199697
Caldina FZ CZ
7A-FE
1140
2513
5.6
17.6
50
41
60
13.2
15.9
1056
656
5spd manual
199702
Caldina E
7A-FE
1200
2645
5.6
17.6
50
41
60
13.2
15.9
1056
656
5spd manual
199702
Spacio
7A-FE
Auto
Nissan lean burn engines
Nissan QG engines are a lean-burn aluminum DOHC 4-valve design with variable valve timing and optional NEO Di direct injection. The 1497cc QG15DE has a Compression ratio of 9.9:1 and 1769cc QG18DE 9.5:1.
Applications
Nissan lean burn engine applications
Unladen weight
Fuel consumption, Japan 10-15 mode
Fuel tank capacity
Range
Years
Model
Engine
kg
lbs
L/100km
km/L
mpg UK
mpg US
L
gal UK
gal US
km
mile
Notes
199801
Sunny
QG15DE
1060
2865
5.3
18.9
53
44
50
11
13.2
943
586
5spd manual, 4dr sedan
199801
Bluebird
QG18DE
1180
2600
5.8
17.2
49
41
60
13.2
15.9
1035
643
5spd manual, 4dr sedan
199801
Primera
QG18DE
1180
2600
5.8
17.2
49
41
60
13.2
15.9
1035
643
5spd manual, 4dr sedan
199801
Avenir Salut
QG18DE
1300
2865
6.7
14.9
42
35
60
13.2
15.9
896
556
5spd manual, 5dr wagon
Mitsubishi Vertical Vortex (MVV)
In 1991, Mitsubishi developed and began producing the MVV (Mitsubishi Vertical Vortex) lean burn system first used in Mitsubishi’s 1.5 L 4G15 straight-4 engine. The lean-burn MVV engine can achieve complete combustion with an air-fuel ratio as high as 25:1, whereas conventional engines require 14.7:1. The result is 13% better fuel economy at 40 km/h (25 mph) over a conventional engine powered vehicle. This improved fuel economy means lower CO2 emissions.
The heart of the Mitsubishi’s MVV system is the linear air-fuel ratio exhaust gas oxygen sensor. Compared with standard oxygen sensors, which essentially are on-off switches set to a single air/fuel ratio, the lean oxygen sensor is more of a measurement device covering the air/fuel ratio range from about 15:1 to 26:1.
In order to speed up the otherwise slow combustion of lean mixtures the MVV engine uses two intake valves and one exhaust valve per cylinder. The separate specially shaped (twin intake port design) intake ports are the same size, but only one port receives fuel from an injector. This creates two vertical vortices of identical size, strength and rotational speed within the combustion chamber during the intake stroke: one vortex of air, the other of an air/fuel mixture. The two vortices also remain independent layers throughout most of the compression stroke.
Near the end of the compression stroke, the layers collapse into uniform minute turbulences, which effectively promote lean-burn characteristics. More importantly, ignition occurs in the initial stages of breakdown of the separate layers while substantial amounts of each layer still exist. Because the spark plug is located closer to the vortex consisting of air/fuel mixture, ignition arises in an area of the pentroof-design combustion chamber where fuel density is higher. The flame then spreads through the combustion chamber via the small turbulences. This provides stable combustion even at normal ignition-energy levels, thereby realizing lean burn.
The engine computer stores optimum air fuel ratios for all engine-operating conditions – from lean (for normal operation) to richest (for heavy acceleration) and all points in between. Full-range oxygen sensors (used for the first time) provide essential information that allows the computers to properly regulate fuel delivery.
Mitsubishi says air/fuel ratios of up to 25:1 are possible with its lean-system powerplant. The single-overhead-cam 1,468-cc 4-cylinder boasts a 10-20% gain in fuel economy (on the Japanese 10-mode urban cycle) in bench tests compared with its conventional MPI powerplant of the same displacement. The vertical vortex engine has an idle speed of 600 rpm and a compression ratio of 9.4:1 compared with respective figures of 700 rpm and 9.2:1 for the conventional version.
Diesel engines
All diesel engines can be considered to be lean burning with respect to the total volume, however the fuel and air is not well mixed before the combustion. Most of the combustion occurs in rich zones around small droplets of fuel. Locally rich combustion like this is a source of NOx and particles.
See also
Engine knocking
Hydrogen fuel enhancement
Footnotes
Citations
^ The Chrysler Lean Burn Engine Control System, AllPar
^ “91CivicHatch”, auto.vl.ru japanese car specification website
^ “95CivicHatch”, auto.vl.ru japanese car specification website
^ “95CivicSedan”, auto.vl.ru japanese car specification website
^ “Toyota Carina Specifications”, auto.vl.ru japanese car specification website
^ “Toyota Corona Premio G”, auto.vl.ru japanese car specification website
^ a b “Toyota Carina”, auto.vl.ru japanese car specification website
^ “Toyota Carina”, auto.vl.ru japanese car specification website
^ “Toyota Corona Premio”, auto.vl.ru japanese car specification website
^ “Toyota Corona Premio G”, auto.vl.ru japanese car specification website
^ “Toyota Caldina”, auto.vl.ru japanese car specification website
^ “Toyota Caldina”, Toyota NZ website
^ “Toyota Spacio”, Toyota NZ website
^ a b “Nissan Sunny”, auto.vl.ru japanese car specification website
^ a b “Nissan Avenir”, auto.vl.ru japanese car specification website
^ “Nissan Bluebird”, auto.vl.ru japanese car specification website
^ “Nissan Primera”, auto.vl.ru japanese car specification website
^ a b c d “Engine Technology”, Mitsubishi Motors South Africa website
^ a b c d e f “Honda can’t sell lean-burn in California”, Joel D. Pietrangelo & Robert Brooks, Ward’s Auto World, September 1991
References
“Advanced Technology Vehicle Modeling in PERE, EPA, Office of Transportation and Air Quality”
Categories: Wikipedia requested photographs of cars | Wikipedia requested photographs of machinery | Engine technologyHidden categories: Articles needing cleanup from March 2008 | All pages needing cleanup | Articles needing additional references from March 2008 | All articles needing additional references | All articles with unsourced statements | Articles with unsourced statements from March 2008
I am China Products writer, reports some information about portable moisture meter , plant moisture tester.